Astrocyte Activation via Stat3 Signaling Determines the Balance of Oligodendrocyte versus Schwann Cell Remyelination.
نویسندگان
چکیده
Remyelination within the central nervous system (CNS) most often is the result of oligodendrocyte progenitor cells differentiating into myelin-forming oligodendrocytes. In some cases, however, Schwann cells, the peripheral nervous system myelinating glia, are found remyelinating demyelinated regions of the CNS. The reason for this peripheral type of remyelination in the CNS and what governs it is unknown. Here, we used a conditional astrocytic phosphorylated signal transducer and activator of transcription 3 knockout mouse model to investigate the effect of abrogating astrocyte activation on remyelination after lysolecithin-induced demyelination of spinal cord white matter. We show that oligodendrocyte-mediated remyelination decreases and Schwann cell remyelination increases in lesioned knockout mice in comparison with lesioned controls. Our study shows that astrocyte activation plays a crucial role in the balance between Schwann cell and oligodendrocyte remyelination in the CNS, and provides further insight into remyelination of CNS axons by Schwann cells.
منابع مشابه
Schwann cells are removed from the spinal cord after effecting recovery from paraplegia.
Remyelination of the CNS is necessary to restore neural function in a number of demyelinating conditions. Schwann cells, the myelinating cells of the periphery, are candidates for this purpose because they have more robust regenerative properties than their central homologs, the oligodendrocytes. Although the ability of Schwann cells to remyelinate the CNS has been demonstrated, their capacity ...
متن کاملAstrocyte-specific activation of TNFR2 promotes oligodendrocyte maturation by secretion of leukemia inhibitory factor.
Tumor necrosis factor (TNF) and its receptors TNFR1 and TNFR2 have pleiotropic effects in neurodegenerative disorders. For example, while TNFR1 mediates neurodegenerative effects in multiple sclerosis, TNFR2 is protective and contributes to remyelination. The exact mode of TNFR2 action, however, is poorly understood. Here, we show that TNFR2-mediated activation of the PI3K-PKB/Akt pathway in pr...
متن کاملAstrocytes from the contused spinal cord inhibit oligodendrocyte differentiation of adult oligodendrocyte precursor cells by increasing the expression of bone morphogenetic proteins.
Promotion of remyelination is an important therapeutic strategy to facilitate functional recovery after traumatic spinal cord injury (SCI). Transplantation of neural stem cells (NSCs) or oligodendrocyte precursor cells (OPCs) has been used to enhance remyelination after SCI. However, the microenvironment in the injured spinal cord is inhibitory for oligodendrocyte (OL) differentiation of NSCs o...
متن کاملStrength of ERK1/2 MAPK Activation Determines Its Effect on Myelin and Axonal Integrity in the Adult CNS.
UNLABELLED Myelin growth is a tightly regulated process driven by multiple signals. ERK1/2-MAPK signaling is an important regulator of myelin thickness. Because, in demyelinating diseases, the myelin formed during remyelination fails to achieve normal thickness, increasing ERK1/2 activity in oligodendrocytes is of obvious therapeutic potential for promoting efficient remyelination. However, oth...
متن کاملProapoptotic and antiapoptotic actions of Stat1 versus Stat3 underlie neuroprotective and immunoregulatory functions of IL-11.
Current therapies for multiple sclerosis target inflammation but do not directly address oligodendrocyte protection or myelin repair. The gp130 family cytokines ciliary neurotrophic factor, leukemia inhibitory factor, and IL-11 have been identified as oligodendrocyte growth factors, and IL-11 is also strongly immunoregulatory, but their underlying mechanisms of action are incompletely character...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American journal of pathology
دوره 185 9 شماره
صفحات -
تاریخ انتشار 2015